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Polarization state of quadratic spatial optical solitons
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We derive governing equations that determine a full polarization state of transversely two-dimensional
spatial solitons in a bulk anisotropic medium with the second-order nonlinearity. Based on nonlinear vectorial
Maxwell’'s equations and approximation of slowly varying envelopes, our approach describes also lowest-order
nonparaxial effects, however the most important factor governing radiation polarization is the medium anisot-
ropy. This factor results in mixing of orthogonal components of electric field of quadratic soliton that consists
of coupled beams at the fundamental frequency and its second harmonics. For the case of weak anisotropy we
determine the soliton polarization state by a perturbation method,; it turns out that it is elliptical and changing
over the soliton transverse section. The approach allows generalization to the case of optical parametric
oscillators.
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[. INTRODUCTION structure and are characterized by elliptical polarization
changing over the soliton transverse section. This feature is
Temporal and spatial solitons in media with quadratic opimportant for a wide area of nonlinear optics and nonlinear
tical nonlinearity predicted by Karamzin and Sukhorukovphysics dealing with high-power radiation propagation in an-
[1], are intensively studied now both experimentally andisotropic media.
theoretically because of their high potential for applications
to all-optical signal processingee review 2] and references Il. THE PROBLEM AND INITIAL EQUATIONS
therein. More detailed theory and numerical simulations
were given for the temporal quadratic solitons, including re-
cent direct solution of full-wave vectorial nonlinear Max-
well's equations[3]. As for the spatial transversely two-
dimensional(2D) quadratic solitons, their theory is not so
developed and is based until now mainly on a phenomeno- -
logical approach not deduced directly from the initial Max- ~ 1D =
well's equations. The complexity of the theoretical problem VX(VXE)+— —=0, V-D=0. )
is connected with effect of anisotropy essential for phase

matching that results in more sophisticated form of radiationyq e B andD are the electric field and flux density vectors
diffraction [4,5] and difference between directions of radia- respectivelyc is the speed of light in vacuum, ands time. '

tion wave vectors and energy flouBoynting vectors  £ther we assume that the interaction between the funda-
The goal of the present paper is the consistent derlvatlo%enw wave(with frequencyw;=w) and its second har-

of equati_ons describ_ing th_e full p_olariza'gion state of Statio_n'monics(with frequencyw,=2w) is nearly phase matched,
ary spatial 2D quasiparaxial optical solitons in bulk media

: ) . X : . “whereas all higher harmonics are far from being phase
with quadratic nonlinearity. We start with the full vectorial matched. Then

nonlinear Maxwell's equations and reduce them to the case

Propagation of optical radiation in crystals is governed by
Maxwell’s equations that for a nonmagnetic and nonconduct-
ing medium without free charges take the fofim Gaussian
units)

of bichromatic radiation to coupled equations for electric 2 2
fields 'at the fundamental and second harmorfsc. ID.' EIE Ej(r,t)e—iwjurc_c_, 5:2 Bj(r,t)efiwjurc_c_,
Then in Sec. lll we apply the approach of slowly varying =1 i=1
envelope to deduce the governing equations for electric field 2

transverse components of sufficiently wide solitons. For the
sake of simplicity we consider the case of uniaxial crysta@nd it follows from Eqs(1)

with symmetry like for the kotassium ditiydrogen phosphate o
(KDP) crystal. These equations’ analysis and approximate VX(VXE)——’E)J:O, V.’f)j:o_ 3
solutions are described in Sec. IV, and a final discussion is c?

presented in Sec. V. Note that similar equations were derived ) ) )
recently for the case of weak anisotropy and biaxial crystal L€t us decompose flux density vectors in the linear and
[6]. As far as we know, our results demonstrate for the firsfonlinear, with respect to electric field, parts

time that quadratic solitons have complicated polarization

*Email address: rosanov@ilph.spb.su Hereéj are second-rank tensors of linear dielectric permit-
"Email address: sfedorov@sf3997.spb.edu tivity and I~3j are the induced nonlinear electric polarizations.
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It is convenient to give their form in the referential of the 2 52 P
main crystalline axeg"crystallographic” system of coordi- A=V, .V, =—+—, L= (0—,&—>.
natesX, Y, Z, that correspond to lower indices 1,2,3). Then axe ay X oy

the linear dielectric permittivity tensor is diagonal and for

uniaxial crystals takes the form Let us introduce also 2D vectors consisting of transverse

components of the electric field and polarization

Slj 0 0
A E, =(Ex.,Ey), P, =(Py,Py).
8] _ 0 8”] O ) (5) 2N ( X y) 1 ( X y)
0 0 g For transverse components of vector EQ.we have
In crystals without inversion center, the main contribution 2 w2

w; .

to the nonlinear electric polarization is quadratic in the eIec—Vf E, + —;(sE)L—FZEL—VL(Vl . El+irEZ)+4W—2 P,
tric field: c c

3 3 =0. (11

Pim= 2 XWExEY. Poan= 2 xGHEwEy. (6
Mgy AmarmRn Mgy Amnan The longitudinal component of the electric fiefig can be

expressed via the field transverse components from the sec-

Now one can rewrite E¢:3) in the form ond of Egs.(1)
2 2 . . _
VX(VXE)~ A5~ 4maB=0, j=12. (7) IT(8E),+V, -(sE,) +4mi [P, +47V, P, =0. (12)
c c

In such a way it is possible to deduce a closed equation

Spatial solitons we are interested in propagate along thgyr transverse components of the soliton electric field, which
longitudinal axisz and are characterized by constant trans4s a goal of the next section.
verse shapes of the electric fields, therefore

Ej _E(xy)e’? =12 ® ll. GOVERNING EQUATION

. Let us compare the order of magnitude of the four terms

Here x and y are the transverse coordinates, and thep, the |eft-hand side of Eq12). To do this we allow that the
propagation constants,=I" and I';=21" were introduced gqjiton widthw is larger as compared with the light wave-
for the fundamental and second harmonics, respectively. Rq’éngth)\ (w>\) and, correspondingly, the propagation con-
lations between the “crystallographic’X,Y,Z) and “light” stantI’ is close to the linear wave numbkr=27/\. Then
(X,y,Z) systems of coordinates are given by the Euler’sthe second term is abOlﬂE/(kW), the thlrd’\“kE/(kW)z and
angles¢ (angle between the axeés andz) and ¢ (angle  he |ast term~kE/(kw)3. Becausekws1, we can neglect

between the axis< and projection of axiz on the plane  (ormg with nonlinear polarization and get purely linear equa-
(X,Y), see alsq3]). More exactly, to get the “light” coor- 4

dinate system, we first rotate the “crystallographic” system
with the fixed axisZ at anglep when the axisy reaches the iT(oE).4V. . (8E )~
axisy, and next rotate the system with the fixed axiat IT(eB) 4V, -(eE,)~0. (13

angIeQ. Note that for a plang wave Iineqr propagating along |, the “crystallographic” system of coordinates
the axisz, we have, depending on polarization state,

E E
E,#0, no=1s, © R TR I
8E= 0 8H 0 EY = EHEY
for an ordinary wave, and 0 0 ¢ E, ¢z
E,.E,#0, n2= | (10  Then in the “light” system of coordinates

SJ_SiI'TZH'f' 8”C0§0
Ex(£,COS0+ ¢ Sir0) + E (e, —e))sin6 cosd
for an extraordinary wave, wherg, . are corresponding re-  ~
fractive indices. Phase matching corresponds to the conditiori _ -
nD~nE~1 that is satisfied for the appropriate choice of Ex(e, —¢&|)sing cosd+E,(&, sin*0+ ¢ cos’6)
angleé.

Now we can exclude the field longitudinal dependence
using the identity

E= EySJ_

Now for a plane wave we have

1
~ - ~ E=—— —¢g|)sind cosvE,,
VX(VXE)=V(V-E)— (A, —ITHE, =g, e x

where the transverse Laplacian was introduced while for a wide soliton(the next iteratioh
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1
EZ: — g_(sl — 8”)Sin 0 COS&EX‘l‘
[

I -
F_sg (8LCO§0+ g| Sirf 6

- _(SJ-_SH) Sln29C0§«9

JE,
W

where
g,=€,SIFO+ g| cog .

Substituting expressiofil4) for the longitudinal electric

field component in Eq11), we find the governing equations
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PP=2xEMER,
PP=2xEQLES,
PP =2yEME®M.

To get the polarization components in the “light” system of
coordinates, it is sufficient to use the following relations:

P,= Py cosé cose+ Py cosf sing— P, sin g,

2 (i) ()
) oj JEy (9E
VEES(])-F( FZ) E(J)-H,B(J) _Hﬁg(l); g
y P,=—Pysing+ Py cose,
PED  2E) ol
+‘yj—2+5j IX9 +47T_2PX :0, (15) . .
X Xay c Ex=Excosf cose—E, sing+E,sin 6 cose
, " 0 . ,Sin2¢ E s +i ,Sinf cose
i 2e(j = —E,sing+ =nf———
v2ED 4| Yp2 2 E(n+iﬁ(n‘7EX IE ne 26, TETT e ey
Ly 2 =y Y oy Y axay
JE,  OE
X[ n>—=+¢ —
PED o2 ox oy
+ 68— +4m—PP=0. (16)
ay c?
Ey=Eycosfsing+E,cose+E,sinfsing
Here
,Cosfsing i ,sindsing
L, e —gf) N2 o? =Bne— +E c03<p+fn e
g(l)? TSIF\ZGF n +7# s
eox  toay
ot —ef)
Nt "l
Y 2e ﬁ)sm20r]ne],
g E;=E,cosf—E,siné
() _ (D) ()_ (1)) 2 Sln0 i cosé JE JE
2 S (EL e ) 4 o = —En2—— + =n? n2X 4o Y
=N C0S 20— | ——=—— | Ng;Sir’ 26, = o T Men o Mgy TE175
sg)sﬁl) ng)shj) I L8| y
89)—8ﬁi) ) Then, neglecting terms of the second order in the small
8= Mei COS 0. parameter kw) "1, we can present these components in the
i ‘Sﬁ form

Note that the nonlinear polarization components are taken in
Egs. (15), (16) in the “light” coordinates. They are linear
combinations of the components in the “crystallographic”
system of coordinate®). To simplify the expressions, let us
take the case of crystal with theh point group of symme-
try, like the KDP crystal. Then there is only one independent
value of nonlinear permittivityy, and in the *“crystallo-
graphic” system of coordinates

P~ (EPER + EPEP ]
P~ (EPEY " + EPEQ ]

PO Y [EPER* + EPEW],
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— A E@ED* 4 g E@EMH 4 g1 E@E(

XXX Xyx—y X XXY
E(l)* E(l)*
(1) (2 (1) =2
dxxx’E( ) —— IX +dxxy'E( ) 07y

(1)* (L)% )

+ —

e SARCI e
Xy =Y gy

(2) (2)
d(l) IEx E(l)* d(l) &E E(l)*

FZ xx'X gy Xy’ X ay X

JEP) JEP
€ (% | g (1)
), B A, 17)
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2 2 1)2 2 1 1 2 1)2
P{= d@EW2+ ABEDED + AP ES)

@ e B, o B
i (1) E(Dx + 5 dXXX,E(l) A B —2- >
L g g@ 5 g p@y : y
[y g e )Y ) E(l) @) =
2) p(1) X 2) (1)
N Y ) (19
(1)* (L)%
+d® E@ I g @) 75y )
yyx' =y yyy' =y ()@ )2 4(2) e(1)E(1) L 4(2) g(1)2
X ady Py _dyxxEx +dyXyEX Ey +dynyy
E(l) JEW
(2) (2) d(Z) , E(l) + d(z) ’E(l) y
PR EY EW* + ), %Ey” e Fl POOTE ox Ty
Iyl yx g X gy X
(1) (1)
+d® E(l) 9Ex +d® E(l)ﬂ (20)
yyx' ax ywysy oy )
JEP
yx'y <9 WY gy It is straightforward to get expressions for the coefficients

d. For example,

g|le cosd+ (e, +g)sing]
(e,5in?0+ ¢ COFH)?

(2) — Lo i
di= —Exsmzesm&p

&, g|[—&,Cc0S0COS 2+ g|(COSH Sinp— cose)sing]
(£,Sin?0+ &) cogH)?

d®,=2xsine

SJ_SH[SII"I 2¢p+2 cose]

(e,SiN%0+¢) cogH)?

d§2y)y= 0, d{2) = x sin6

(2) —
dxyy=xsin2¢sing,  di5y

|
IV. FIELD POLARIZATION STATE the fundamental frequency is an ordinary wavE(
=0E{N+0), and at the second harmonic it is an extraordi-
nary wave EP#0EP=0). The cylindrically symmetric
componentE{Y(p) andEP(p) (p=x*+y?), were found
numerically for the first time in Ref.1], and they are given

Equations (15) and (16) represent a system of four
coupled equations for the field two frequencjes1,2 and
the two transverse componemnty/. They are valid for any
type of phase matching, and include walk-off effects con-
nected with difference in directions of the light-wave vector
and Poynting vector for extraordinary wavé®ld x compo-
nents. The equations include lowest-order nonparaxial terms . 2
(see a nonlocal form of the medium nonlinear polarization, 1
Egs. (17)—(20), but they are not the main influence on the
soliton characteristics. The most remarkable in EfS) and 3
(16) is appearance of “additional” terms that mix the fietd
andy-components. Note that these terms are proportional to
the factor of anisotropy &()—&f") and are absent under
approximation of weak anisotrofd¥]. However, this factor

2 a2, 5'1.2

is not small for a number of widely used nonlinear crystals,
and in this case it is necessary to solve the full syst&8
and(16). And even in the case of weak anisotropy, one has
to use Eqs(15) and(16) for determination of the field po-

pVr—ie

AT T T T T T T
o 4 8 12 16

FIG. 1. Radial profiles of dimensionless amplitudes for scalar

larization state that will be the goal of our following consid- soliton a , (curves 1, 2 and for additional field vectorial compo-

eration.
Let us consider the so-callemb— e interaction when in
the zeroth-order approximatiore{’—{’—0) radiation at
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nentsalyz (curves 3, 4, for relative nonlinear coefficients in Egs.
(24 and (25) we used valuesi{)/d{}) =0.5, and 3
X(,B(l) (2)) 0.3.

(d2)/d?)

yXxy Xyy:
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in Fig. 1. The field additional components can be found by golarization is linear. Polarization ellipse is situated approxi-
perturbation approach similar to one used in R&l.from  mately in the planey(,z) for the fundamental wave and in

the linear equations the plane X,z) for the second harmonics, but its goes off
JERD) these planes with account of the small field additional com-
v? E(2) (1"2 k2)E(2)+ d(Z)E(l)E(l)-i-I,B(Z) =0, ponents.
ady The ratio of the “additional” electric field component
2D RW to the main componeri{" is proportional to the ratio
JEM alay,
VIED - (1K EP -+ IREPED" +i0) =0, oo |
22 R’ a; ng/ng—1 sin®6 cos#

1) a — +(n2/n2— i A"
where k;=w;/cny;, ky=w,/Cng,. The first-order terms Ey V1=K (n/ne— 1)sin’e
of Egs.(3) and(7) only were kept here. The right-hand sides Let us present estimations for the caseof- e interaction
of these equations are functions known from the zeroth apin uniaxial KDP crystal. For the fundamental harmonic we
proximation, and in the cylindrical coordinatep,{) they  have\=1.06um, n,=1.4939,n.=1.4599 phase-matching
depend on the angle as sin Therefore, it is possible to angled=41°, coefficient of nonlinearity is given by relation
separate variables k; ?|dLEP) | ~0.13/S(MW/cm?], whereS is the Poynting
2) i 2@@) o D) D) e vector, or the radiation intensity. The value —k/T’

By =18y Ry (p)sina,  BEX7=15,Ry (p)sma,(zg) k~2|dLEP) | ~1/(kw)? is a measure of the soliton non-
paraxiality. The maximum rati¢a, /a;|=0.36 (see Fig. 1,
and to get the following equations for the radial functions  therefore| R{/E(Y|= (10" %/ S[W/cn?]) ¥4 It is naturally to

introduce the critical intensityS,, = 10~ 2[W/cm?], which

2n(2) (2)
d*Ry N 1 dRy —(F2- k)R + (d2) gD g@)EWRW) cqrrespond; to the soliton widkw~ 2800. Then for §ol|tons
dp2 p dp 2 "2y yxyPxy 1 Pxy /=y T with width in the range £kw=2800 effect of anisotropy
(appearance of essential additional field componehés
dE® comes important.
-~ (24
V. CONCLUSIONS
d’RY 1 dRY . : ,
2T (P22 R4 g E@RW* We hqve _denved the envelop_e equations that describe _the
dp?2 p dp Lo o full polarization structure of stationary spatial 2D quadratic
optical solitons. These equations include a number of terms
dE§,1) additional to the standard ones and of the same order of
- dp - (29 magnitude as terms describing so-called walk-off effects. In

the case of weak anisotropy the governing equations allow a
simple solution by the perturbative approach that reveals
“hontrivial state of the soliton polarization state. For experi-
mental verification of the results presented, it is simpler to
register appearance and angular dependence of polarization
components of quadratic solitons excited by radiation with
linear state of polarization for the fundamental frequency and

Boundary conditions to these ordinary differential equation
are naturalthe radial functions decay at—« and are finite
at p—0). Note that according to Eq&3) the “additional”
components are shifted in phaserd® as compared with the
main components. Results of numerical solutions of Eqgs
(24) and(25) are presented in Fig. 1. Here we present dimen- its second harmonics.

smr;lesszamglltudeal, a2 fo_r SOI'tf)n with Pafa.meﬁefS[(z The governing equations admit generalization with a stan-
—k3)/(I'{—k7)=0.15 and dimensionless amplitudes, a,  dard taking into account propagation effects. Note, however,
for field additional vectorial components depending on di-that in the case of a weak anisotropy we do not need soliton

mensionless coordinate stability analysis. In fact, we deal in the zeroth order with a
stable soliton, so its stability cannot be changed as a result of
1) gD @ (2) g e . N
a :E dyxydxyy EX dyxy small perturbations. Other straightforward generalization is
! (r2—g? ° 2= (I2—k3)’ the case of optical parametric oscillators that are very impor-
tant for different applicationg2].
(1) (l (2) (2)4(1)
Ry dy Aydyy Ry dyxy
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