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Polarization state of quadratic spatial optical solitons

N. N. Rosanov* and S. V. Fedorov†
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We derive governing equations that determine a full polarization state of transversely two-dimensional
spatial solitons in a bulk anisotropic medium with the second-order nonlinearity. Based on nonlinear vectorial
Maxwell’s equations and approximation of slowly varying envelopes, our approach describes also lowest-order
nonparaxial effects, however the most important factor governing radiation polarization is the medium anisot-
ropy. This factor results in mixing of orthogonal components of electric field of quadratic soliton that consists
of coupled beams at the fundamental frequency and its second harmonics. For the case of weak anisotropy we
determine the soliton polarization state by a perturbation method; it turns out that it is elliptical and changing
over the soliton transverse section. The approach allows generalization to the case of optical parametric
oscillators.
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I. INTRODUCTION

Temporal and spatial solitons in media with quadratic o
tical nonlinearity predicted by Karamzin and Sukhoruk
@1#, are intensively studied now both experimentally a
theoretically because of their high potential for applicatio
to all-optical signal processing~see review@2# and references
therein!. More detailed theory and numerical simulatio
were given for the temporal quadratic solitons, including
cent direct solution of full-wave vectorial nonlinear Ma
well’s equations@3#. As for the spatial transversely two
dimensional~2D! quadratic solitons, their theory is not s
developed and is based until now mainly on a phenome
logical approach not deduced directly from the initial Ma
well’s equations. The complexity of the theoretical proble
is connected with effect of anisotropy essential for ph
matching that results in more sophisticated form of radiat
diffraction @4,5# and difference between directions of radi
tion wave vectors and energy flows~Poynting vectors!.

The goal of the present paper is the consistent deriva
of equations describing the full polarization state of statio
ary spatial 2D quasiparaxial optical solitons in bulk med
with quadratic nonlinearity. We start with the full vectori
nonlinear Maxwell’s equations and reduce them to the c
of bichromatic radiation to coupled equations for elect
fields at the fundamental and second harmonics~Sec. II!.
Then in Sec. III we apply the approach of slowly varyin
envelope to deduce the governing equations for electric fi
transverse components of sufficiently wide solitons. For
sake of simplicity we consider the case of uniaxial crys
with symmetry like for the kotassium ditiydrogen phospha
~KDP! crystal. These equations’ analysis and approxim
solutions are described in Sec. IV, and a final discussio
presented in Sec. V. Note that similar equations were der
recently for the case of weak anisotropy and biaxial crys
@6#. As far as we know, our results demonstrate for the fi
time that quadratic solitons have complicated polarizat
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structure and are characterized by elliptical polarizat
changing over the soliton transverse section. This featur
important for a wide area of nonlinear optics and nonline
physics dealing with high-power radiation propagation in a
isotropic media.

II. THE PROBLEM AND INITIAL EQUATIONS

Propagation of optical radiation in crystals is governed
Maxwell’s equations that for a nonmagnetic and noncondu
ing medium without free charges take the form~in Gaussian
units!

“3~“3 Ẽ̃!1
1

c2

]2D̃̃

]t2
50, “• D̃̃50. ~1!

Here Ẽ̃ and D̃̃ are the electric field and flux density vector
respectively,c is the speed of light in vacuum, andt is time.
Further we assume that the interaction between the fun
mental wave~with frequencyv15v) and its second har
monics ~with frequencyv152v) is nearly phase matched
whereas all higher harmonics are far from being ph
matched. Then

Ẽ̃5(
j 51

2

Ẽj~r ,t !e2 iv j t1c.c., D̃̃5(
j 51

2

D̃j~r ,t !e2 iv j t1c.c.,

~2!

and it follows from Eqs.~1!

“3~“3Ẽ!2
v j

2

c2
D̃j50, “•D̃j50. ~3!

Let us decompose flux density vectors in the linear a
nonlinear, with respect to electric field, parts

D̃j5 «̂ j Ẽ14pP̃j . ~4!

Here «̂ j are second-rank tensors of linear dielectric perm
tivity and P̃j are the induced nonlinear electric polarization
©2001 The American Physical Society01-1
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It is convenient to give their form in the referential of th
main crystalline axes~‘‘crystallographic’’ system of coordi-
natesX, Y, Z, that correspond to lower indices 1,2,3). Th
the linear dielectric permittivity tensor is diagonal and f
uniaxial crystals takes the form

«̂ j5S «' j 0 0

0 « i j 0

0 0 « i j

D . ~5!

In crystals without inversion center, the main contributi
to the nonlinear electric polarization is quadratic in the el
tric field:

P̃1m5 (
n,l 51

3

xmnl
(1) Ẽ2nẼ1l* , P̃2m5 (

n,l 51

3

xmnl
(2) Ẽ1nẼ1l . ~6!

Now one can rewrite Eq.~3! in the form

“3~“3Ẽj !2
v j

2

c2
«̂ j Ẽj24p

v j
2

c2
P̃j50, j 51,2. ~7!

Spatial solitons we are interested in propagate along
longitudinal axisz and are characterized by constant tra
verse shapes of the electric fields, therefore

Ẽj5Ej~x,y!eiG j z, j 51,2. ~8!

Here x and y are the transverse coordinates, and
propagation constantsG15G and G252G were introduced
for the fundamental and second harmonics, respectively.
lations between the ‘‘crystallographic’’ (X,Y,Z) and ‘‘light’’
(x,y,z) systems of coordinates are given by the Eule
anglesu ~angle between the axesZ and z) and w ~angle
between the axisX and projection of axisz on the plane
(X,Y), see also@3#!. More exactly, to get the ‘‘light’’ coor-
dinate system, we first rotate the ‘‘crystallographic’’ syste
with the fixed axisZ at anglew when the axisY reaches the
axis y, and next rotate the system with the fixed axisy at
angleu. Note that for a plane wave linear propagating alo
the axisz, we have, depending on polarization state,

EyÞ0, no5A«' ~9!

for an ordinary wave, and

Ex ,EyÞ0, ne
25

«'« i

«'sin2u1« icos2u
~10!

for an extraordinary wave, whereno,e are corresponding re
fractive indices. Phase matching corresponds to the cond
no

( j )'ne
(32 j ) that is satisfied for the appropriate choice

angleu.
Now we can exclude the field longitudinal dependen

using the identity

“3~“3Ẽj !5“~“•Ẽj !2~D'2 iG j
2!Ẽj ,

where the transverse Laplacian was introduced
06660
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D'5“'•“'5
]2

]x2
1

]2

]y2
, “'5S ]

]x
,

]

]yD .

Let us introduce also 2D vectors consisting of transve
components of the electric field and polarization

E'5~Ex ,Ey!, P'5~Px ,Py!.

For transverse components of vector Eq.~7! we have

“'
2 E'1

v j
2

c2
~ «̂E!'2G2E'2“'~“'•E'1 iGEz!14p

v2

c2
P'

50. ~11!

The longitudinal component of the electric fieldEz can be
expressed via the field transverse components from the
ond of Eqs.~1!

iG~«̂E!z1“'•~ «̂E'!14p iGPz14p“'•P'50. ~12!

In such a way it is possible to deduce a closed equa
for transverse components of the soliton electric field, wh
is a goal of the next section.

III. GOVERNING EQUATION

Let us compare the order of magnitude of the four ter
in the left-hand side of Eq.~12!. To do this we allow that the
soliton width w is larger as compared with the light wave
lengthl (w@l) and, correspondingly, the propagation co
stantG is close to the linear wave numberk52p/l. Then
the second term is aboutkE/(kw), the third;kE/(kw)2 and
the last term;kE/(kw)3. Becausekw@1, we can neglect
terms with nonlinear polarization and get purely linear eq
tion

iG~«̂E!z1“'•~ «̂E'!'0. ~13!

In the ‘‘crystallographic’’ system of coordinates

«̂EÄS «' 0 0

0 « i 0

0 0 « i

D S EX

EY

EZ

D 5S «'EX

« iEY

« iEZ

D .

Then in the ‘‘light’’ system of coordinates

«̂EÄS Ex~«'cos2u1« i sin2u!1Ez~«'2« i!sinu cosu

Ey«'

Ex~«'2« i!sinu cosu1Ez~«'sin2u1« i cos2u!
D .

Now for a plane wave we have

Ez52
1

«u
~«'2« i!sinu cosuEx ,

while for a wide soliton~the next iteration!
1-2
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Ez52
1

«u
~«'2« i!sinu cosuEx1

i

G«u
F S «'cos2u1« i sin2u

2
1

«u
~«'2« i!

2 sin2u cos2u D ]Ex

]x
1«'

]Ey

]y G , ~14!

where

«u5«'sin2u1« i cos2u.

Substituting expression~14! for the longitudinal electric
field component in Eq.~11!, we find the governing equation

“'
2 Ex

( j )1S v j
2

c2
ne j

2 2G j
2D Ex

( j )1 ibxx
( j )

]Ex
( j )

]x
1 ibxy

( j )
]Ey

( j )

]y

1g j

]2Ex
( j )

]x2
1d j

]2Ey
( j )

]x]y
14p

v j
2

c2
Px

( j )50, ~15!

“'
2 Ey

( j )1S v j
2

c2
no j

2 2G j
2D Ey

( j )1 ibxy
( j )

]Ex
( j )

]y
1g j

]2Ex
( j )

]x]y

1d j

]2Ey
( j )

]y2
14p

v j
2

c2
Py

( j )50. ~16!

Here

bxx
( j )5

«'
( j )2« i

( j )

«'
( j )« i

( j )
sin 2uG jne j

2 S 11
ne j

2

2

v j
2

c2G j
2D ,

bxy
( j )5

«'
( j )2« i

( j )

2«'
( j )« i

( j )
sin 2uG jne j

2 ,

g j5
«'

( j )2« i
( j )

«'
( j )« i

( j )
ne j

2 cos 2u2S «'
( j )2« i

( j )

2«'
( j )« i

( j ) D 2

ne j
4 sin2 2u,

d j5
«'

( j )2« i
( j )

«'
( j )« i

( j )
ne j

2 cos2u.

Note that the nonlinear polarization components are take
Eqs. ~15!, ~16! in the ‘‘light’’ coordinates. They are linea
combinations of the components in the ‘‘crystallographi
system of coordinates~6!. To simplify the expressions, let u
take the case of crystal with the 42̄m point group of symme-
try, like the KDP crystal. Then there is only one independ
value of nonlinear permittivityx, and in the ‘‘crystallo-
graphic’’ system of coordinates

PX
(1)5x@EY

(2)EZ
(1)* 1EZ

(2)EY
(1)* #,

PY
(1)5x@EX

(2)EZ
(1)* 1EZ

(2)EX
(1)* #,

PZ
(1)5x@EX

(2)EY
(1)* 1EY

(2)EX
(1)* #,
06660
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PX
(2)52xEY

(1)EZ
(1) ,

PY
(2)52xEX

(1)EZ
(1) ,

PZ
(2)52xEX

(1)EY
(1) .

To get the polarization components in the ‘‘light’’ system
coordinates, it is sufficient to use the following relations:

Px5PX cosu cosw1PY cosu sinw2PZ sinu,

Py52PX sinw1PY cosw,

EX5Ex cosu cosw2Ey sinw1Ez sinu cosw

5Exne
2 sin 2w

2«'

2Ey sinw1
i

G
ne

2 sinu cosw

«'« i

3S ne
2]Ex

]x
1«'

]Ey

]y D ,

EY5Ex cosu sinw1Ey cosw1Ez sinu sinw

5Exne
2 cosu sinw

«'

1Ey cosw1
i

G
ne

2 sinu sinw

«'« i

3S ne
2 ]Ex

]x
1«'

]Ey

]y D ,

EZ5Ez cosu2Ex sinu

52Exne
2 sinu

« i
1

i

G
ne

2 cosu

«'« i
S ne

2]Ex

]x
1«'

]Ey

]y D .

Then, neglecting terms of the second order in the sm
parameter (kw)21, we can present these components in
form

Px
(1)5dxxx

(1) Ex
(2)Ex

(1)* 1dxyx
(1) Ey

(2)Ex
(1)* 1dxxy

(1) Ex
(2)Ey

(1)*

1
i

G1
S dxxx8

(1) Ex
(2)

]Ex
(1)*

]x
1dxxy8

(1) Ex
(2)

]Ey
(1)*

]y

1dxyx8
(1) Ey

(2)
]Ex

(1)*

]x
1dxyy8

(1) Ey
(2)

]Ey
(1)*

]y D
1

i

G2
S dxx8x

(1) ]Ex
(2)

]x
Ex

(1)* 1dxy8x
(1) ]Ey

(2)

]y
Ex

(1)*

1dxx8y
(1) ]Ex

(2)

]x
Ey

(1)* 1dxy8y
(1) ]Ey

(2)

]y
Ey

(1)* D , ~17!
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Py
(1)5dyxx

(1) Ex
(2)Ex

(1)* 1dyyx
(1) Ey

(2)Ex
(1)* 1dyxy

(1) Ex
(2)Ey

(1)*

1
i

G1
S dyxx8

(1) Ex
(2)

]Ex
(1)*

]x
1dyxy8

(1) Ex
(2)

]Ey
(1)*

]y

1dyyx8
(1) Ey

(2)
]Ex

(1)*

]x
1dyyy8

(1) Ey
(2)

]Ey
(1)*

]y D
1

i

G2
S dyx8x

(1) ]Ex
(2)

]x
Ex

(1)* 1dyy8x
(1) ]Ey

(2)

]y
Ex

(1)*

1dyx8y
(1) ]Ex

(2)

]x
Ey

(1)* 1dyy8y
(1) ]Ey

(2)

]y
Ey

(1)* D , ~18!
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Px
(2)5dxxx

(2) Ex
(1)21dxxy

(2) Ex
(1)Ey

(1)1dxyy
(2) Ey

(1)2

1
i

G1
S dxxx8

(2) Ex
(1)

]Ex
(1)

]x
1dxxy8

(2) Ex
(1)

]Ey
(1)

]y

1dxyx8
(2) Ey

(1)
]Ex

(1)

]x
1dxyy8

(2) Ey
(1)

]Ey
(1)

]y D , ~19!

Py
(2)5dyxx

(2) Ex
(1)21dyxy

(2) Ex
(1)Ey

(1)1dyyy
(2) Ey

(1)2

1
i

G1
S dyxx8

(2) Ex
(1)

]Ex
(1)

]x
1dyxy8

(2) Ex
(1)

]Ey
(1)

]y

1dyyx8
(2) Ey

(1)
]Ex

(1)

]x
1dyyy8

(2) Ey
(1)

]Ey
(1)

]y D . ~20!

It is straightforward to get expressions for the coefficie
d. For example,
dxxx
(2) 52

1

2
x sin 2u sin 2w

« i@«'cosu1~«'1« i!sinw#

~«'sin2u1« i cos2u!2
,

dxxy
(2) 52x sinu

«'« i@2«'cosu cos 2w1« i~cosu sinw2cos2w!sinw#

~«'sin2u1« i cos2u!2
,

dyyy
(2) 50, dxyy

(2) 5x sin 2w sinu, dyxy
(2) 5x sinu

«'
2 « i@sin 2w12 cosw#

~«'sin2u1« i cos2u!2
.

di-

lar
-

.

IV. FIELD POLARIZATION STATE

Equations ~15! and ~16! represent a system of fou
coupled equations for the field two frequenciesj 51,2 and
the two transverse componentsx,y. They are valid for any
type of phase matching, and include walk-off effects co
nected with difference in directions of the light-wave vec
and Poynting vector for extraordinary waves~field x compo-
nents!. The equations include lowest-order nonparaxial ter
~see a nonlocal form of the medium nonlinear polarizati
Eqs. ~17!–~20!, but they are not the main influence on th
soliton characteristics. The most remarkable in Eqs.~15! and
~16! is appearance of ‘‘additional’’ terms that mix the fieldx-
andy-components. Note that these terms are proportiona
the factor of anisotropy («'

( j )2« i
( j )) and are absent unde

approximation of weak anisotropy@5#. However, this factor
is not small for a number of widely used nonlinear crysta
and in this case it is necessary to solve the full system~15!
and ~16!. And even in the case of weak anisotropy, one h
to use Eqs.~15! and ~16! for determination of the field po
larization state that will be the goal of our following consi
eration.

Let us consider the so-calledoo→e interaction when in
the zeroth-order approximation («'

( j )2« i
( j )→0) radiation at
-
r

s
,

to

,

s

the fundamental frequency is an ordinary wave (Ex
(1)

50,Ey
(1)Þ0), and at the second harmonic it is an extraor

nary wave (Ex
(2)Þ0,Ey

(2)50). The cylindrically symmetric
componentsEy

(1)(r) andEx
(2)(r) (r5Ax21y2), were found

numerically for the first time in Ref.@1#, and they are given

FIG. 1. Radial profiles of dimensionless amplitudes for sca
soliton a1,2 ~curves 1, 2! and for additional field vectorial compo

nentsã1,2 ~curves 3, 4!, for relative nonlinear coefficients in Eqs
~24! and ~25! we used valuesdxxx

(1) /dyxy
(1) 50.5, and 1

2 (dyxy
(2) /dxyy

(2) )
3(bxy

(1)/bxy
(2))50.3.
1-4
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in Fig. 1. The field additional components can be found b
perturbation approach similar to one used in Ref.@7# from
the linear equations

“'
2 Ey

(2)2~G2
22k2

2!Ey
(2)1dyxy

(2) Ey
(1)Ex

(1)1 ibxy
(2)

]Ex
(2)

]y
50,

~21!

“'
2 Ex

(1)2~G1
22k1

2!Ex
(1)1dxxx

(1) Ex
(2)Ex

(1)* 1 ibxy
(1)

]Ey
(1)

]y
50,

~22!

where k15v1 /cno1 , k25v2 /cne2. The first-order terms
of Eqs.~3! and~7! only were kept here. The right-hand sid
of these equations are functions known from the zeroth
proximation, and in the cylindrical coordinates (r,a) they
depend on the angle as sina. Therefore, it is possible to
separate variables

Ey
(2)5 ibxy

(2)Ry
(2)~r!sina, Ex

(1)5 ibxy
(1)Rx

(1)~r!sina,
~23!

and to get the following equations for the radial functions

d2Ry
(2)

dr2
1

1

r

dRy
(2)

dr
2~G2

22k2
2!Ry

(2)1~dyxy
(2) bxy

(1)/bxy
(2)!Ey

(1)Rx
(1)

52
dEx

(2)

dr
, ~24!

d2Rx
(1)

dr2
1

1

r

dRx
(1)

dr
2~G1

22k1
2!Rx

(1)1dxxx
(1) Ex

(2)Rx
(1)*

52
dEy

(1)

dr
. ~25!

Boundary conditions to these ordinary differential equatio
are natural~the radial functions decay atr→` and are finite
at r→0). Note that according to Eqs.~23! the ‘‘additional’’
components are shifted in phase atp/2 as compared with the
main components. Results of numerical solutions of E
~24! and~25! are presented in Fig. 1. Here we present dim
sionless amplitudesa1 , a2 for soliton with parameters (G2

2

2k2
2)/(G1

22k1
2)50.15 and dimensionless amplitudesã1 , ã2

for field additional vectorial components depending on
mensionless coordinate

a15
Ey

(1)Adyxy
(1) dxyy

(2)

~G1
22k1

2!
, a25

Ex
(2)dyxy

(1)

~G1
22k1

2!
,

ã15
Rx

(1)

bxy
(1)A dyxy

(1) dxyy
(2)

~G1
22k1

2!
, ã25

Ry
(2)dyxy

(1)

4bxy
(2)AG1

22k1
2

.

Note that now all the components of the fields at both fu
damental and the second harmonics are nonzero. There
polarization state at both frequencies is not linearly, but
liptically polarized, and polarization state changes over
soliton transverse section. Only at the axis (r50) the field
06660
a

p-

s

s.
-

-

-
re,
l-
e

polarization is linear. Polarization ellipse is situated appro
mately in the plane (y,z) for the fundamental wave and i
the plane (x,z) for the second harmonics, but its goes o
these planes with account of the small field additional co
ponents.

The ratio of the ‘‘additional’’ electric field componen
Rx

(1) to the main componentEy
(1) is proportional to the ratio

ã1 /a1,

Rx
(1)

Ey
(1)

5
ã1

a1

no
2/ne

221

A12k1
2/G1

2

sin3u cosu

11~no
2/ne

221!sin4u
.

Let us present estimations for the case ofoo→e interaction
in uniaxial KDP crystal. For the fundamental harmonic w
havel51.06mm, no51.4939,ne51.4599 phase-matching
angleu>41°, coefficient of nonlinearity is given by relatio
k1

22udyxy
(1) Ex

(2)u;0.13AS@MW/cm2#, whereS is the Poynting
vector, or the radiation intensity. The value 12k2/G2

;k22udyxy
(1) Ex

(2)u;1/(kw)2 is a measure of the soliton non

paraxiality. The maximum ratiouã1 /a1u50.36 ~see Fig. 1!,
thereforeuRx

(1)/Ey
(1)u>(1022/S@W/cm2#)1/4. It is naturally to

introduce the critical intensityScr51022@W/cm 2#, which
corresponds to the soliton widthkw;2800. Then for solitons
with width in the range 1&kw&2800 effect of anisotropy
~appearance of essential additional field components! be-
comes important.

V. CONCLUSIONS

We have derived the envelope equations that describe
full polarization structure of stationary spatial 2D quadra
optical solitons. These equations include a number of te
additional to the standard ones and of the same orde
magnitude as terms describing so-called walk-off effects
the case of weak anisotropy the governing equations allo
simple solution by the perturbative approach that reve
nontrivial state of the soliton polarization state. For expe
mental verification of the results presented, it is simpler
register appearance and angular dependence of polariz
components of quadratic solitons excited by radiation w
linear state of polarization for the fundamental frequency a
its second harmonics.

The governing equations admit generalization with a st
dard taking into account propagation effects. Note, howev
that in the case of a weak anisotropy we do not need sol
stability analysis. In fact, we deal in the zeroth order with
stable soliton, so its stability cannot be changed as a resu
small perturbations. Other straightforward generalization
the case of optical parametric oscillators that are very imp
tant for different applications@2#.
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